Historia de la ciencia en el Renacimiento

El sistema copernicano (De revolutionibus orbium coelestium).
Hombre vitruviano, de Leonardo da Vinci, un ejemplo de la mixtura entre arte y ciencia en el Renacimiento.
Ilustración de De humani corporis fabrica, de Andrés Vesalio (1543).

La historia de la ciencia en el Renacimiento comienza con el redescubrimiento de textos científicos antiguos durante el Renacimiento y se acelera después de la caída de Constantinopla en 1453 y la invención de la imprenta —que democratizaría al aprendizaje y permitiría una propagación más rápida de nuevas ideas— y los descubrimientos geográficos ocurridos en esta era.[1]

Las ciencias naturales, fundamentadas en la metafísica nominalista, se diferenciaron de los estudios anteriores —de raíz aristotélica— en dos factores esenciales: la idea de la naturaleza y el método físico.[2]​ La primera evoluciona desde la física ontológica aristotélica hacia un discurrir simbólico fundamentado en las matemáticas, pasando de analizar el «ser de las cosas» a interpretar «variaciones de fenómenos»; por tanto, se renuncia a conocer las causas a cambio de medir los fenómenos, sentando las bases de la ciencia positiva.[3]​ El método físico, por otro lado, se fundamenta en el empirismo, basado en el «análisis de la naturaleza», el cual parte de una hipótesis de origen matemático para llegar a una comprobación a posteriori de esa premisa apriorística.[4]​ Uno de los principales teóricos de la nueva ciencia fue el filósofo inglés Francis Bacon, padre del empirismo filosófico y científico; su principal obra, Novum organum, presenta la ciencia como técnica, experimental e inductiva, capaz de dar al ser humano el dominio sobre la naturaleza.[5]

Una de las disciplinas científicas que más se desarrolló en esta época fue la astronomía, gracias principalmente a la figura de Nicolás Copérnico: este científico polaco fue el difusor de la teoría heliocéntrica —los planetas giran alrededor del Sol— frente a la geocéntrica impuesta en la Edad Media principalmente por la iglesia —la Tierra es el centro del universo. Expuso esta teoría, basada en la de Aristarco de Samos.[6][7]​ Este sistema fue posteriormente desarrollado por Johannes Kepler, quien describió el movimiento de los planetas conforme a órbitas elípticas.[8][9]​ Por último, Galileo Galilei sistematizó estos conocimientos y formuló los principios modernos del conocimiento científico, por lo que fue procesado por la Inquisición y obligado a retractarse; sin embargo, está considerado por ello el fundador de la física moderna.[10]​ Otro astrónomo destacado de este período fue Tycho Brahe, creador del observatorio de Uraniborg, desde el que realizó numerosas observaciones astronómicas que sirvieron de base a los cálculos de Kepler.[11]​ También cabe remarcar que en 1582 el papa Gregorio XIII introdujo el calendario gregoriano, que sustituyó al anterior calendario juliano.[12]

Las matemáticas también avanzaron notablemente en esta época: Christoph Rudolff desarrolló la utilización de las fracciones decimales; Regiomontano estudió la trigonometría esférica y rectilínea;[13]​ los italianos Gerolamo Cardano y Lodovico Ferrari resolvieron las ecuaciones de tercer y cuarto grado, respectivamente; otro italiano, Tartaglia, utilizó el triángulo aritmético para calcular los coeficientes de un binomio;[14]Rafael Bombelli estudió los números imaginarios;[15]François Viète efectuó importantes avances en trigonometría,[16]​ y creó el simbolismo algebraico;[17]Simon Stevin estudió las primeras tablas de intereses, resolvió el problema de la composición de fuerzas y sistematizó las fracciones decimales.[18]

En ciencias naturales y medicina también hubo importantes avances: en 1543 Andrés Vesalio publicó De humani corporis fabrica, un compendio de anatomía con profusas ilustraciones considerado uno de los más influyentes libros científicos de todos los tiempos; Bartolomeo Eustachio descubrió las cápsulas suprarrenales; Ambroise Paré inició la cirugía moderna; Conrad von Gesner inauguró la zoología moderna con una primera clasificación de animales por géneros y familias; Miguel Servet describió la circulación pulmonar, y William Harvey la de la sangre; Gabriele Falloppio estudió la estructura interna del oído; Ulisse Aldrovandi creó el primer jardín botánico en Bolonia; Bernard Palissy fundamentó la paleogeografía; Caspar Bauhin introdujo un primer método de clasificación de las plantas; y Zacharias Janssen inventó el microscopio en 1590.[19]

También avanzó notablemente la geografía y la cartografía, gracias a los numerosos descubrimientos realizados en esta época. Cabe destacar la labor del flamenco Gerardus Mercator, autor del primer mapa del mundo (1538) y descubridor de un método de posicionamiento geográfico sobre un mapa del rumbo dado por una aguja imantada.[20]

En el terreno de la química, relacionada todavía con la alquimia medieval, hubo escasos avances: Georgius Agricola fundó la mineralogía moderna, clasificando los minerales según sus caracteres externos;[21]Paracelso aplicó la alquimia a la medicina, estudiando las propiedades de los minerales como fármacos, en el transcurso de cuyas investigaciones descubrió el cinc; Andreas Libavius escribió el primer tratado sobre química con una mínima base científica,[22]​ e introdujo diversos preparados químicos, como el ácido clorhídrico, el tetracloruro de estaño y el sulfato amónico, así como la preparación del agua regia.[23]

Por último, conviene citar la figura polifacética de Leonardo da Vinci, ejemplo del hombre renacentista interesado en todas las materias tanto artísticas como científicas (homo universalis). En el terreno de la ciencia, realizó varios proyectos como máquinas voladoras, concentradores de energía solar o calculadoras, que no pasaron de meros proyectos teóricos. También realizó trabajos de ingeniería, hidráulica y mecánica, y estudios de anatomía, óptica, botánica, geología, paleontología y otras disciplinas.[24]

Historiadores como George Sarton y Lynn Thorndike han criticado el efecto del Renacimiento sobre la ciencia, argumentando que el progreso fue demorado porque los humanistas favorecieron los temas centrados en el hombre, como política e historia, sobre el estudio de la filosofía natural o la matemática aplicada. Otros se han localizado en la influencia positiva del Renacimiento puntualizando factores como el descubrimiento de muchísimos textos ocultos o perdidos, y el nuevo énfasis en el estudio de la lengua y la correcta lectura de textos. Marie Boas Hall acudió el término «Renacimiento científico» para designar la primera fase de la Revolución científica. Recientemente, Peter Dear argumentó a favor de un modelo de dos fases para explicar la Génesis de la ciencia moderna: un «Renacimiento científico» en los siglos XV y XVI, centrado en la restauración del conocimiento natural de los antiguos, y una «Revolución científica» en el siglo XVII, cuándo los científicos pasaron de la recuperación a la invención.

  1. AA. VV. (1997). Enciclopedia Salvat. Barcelona: Salvat. p. 884. ISBN 84-345-9707-1. 
  2. Marías, Julián (2001). Historia de la filosofía. Madrid: Alianza Editorial. p. 193. ISBN 84-206-8183-0. 
  3. Marías, Julián (2001). Historia de la filosofía. Madrid: Alianza Editorial. p. 195. ISBN 84-206-8183-0. 
  4. Marías, Julián (2001). Historia de la filosofía. Madrid: Alianza Editorial. pp. 195-197. ISBN 84-206-8183-0. 
  5. Marías, Julián (2001). Historia de la filosofía. Madrid: Alianza Editorial. pp. 240-242. ISBN 84-206-8183-0. 
  6. AA. VV. (1997). Enciclopedia Salvat. Barcelona: Salvat. p. 1019. ISBN 84-345-9707-1. 
  7. Nicolás Copérnico (1543) De revolutionibus orbium coelestium
  8. AA. VV. (1997). Enciclopedia Salvat. Barcelona: Salvat. p. 2204. ISBN 84-345-9707-1. 
  9. Johannes Kepler (1609) Astronomia nova
  10. Marías, Julián (2001). Historia de la filosofía. Madrid: Alianza Editorial. p. 194. ISBN 84-206-8183-0. 
  11. AA. VV. (1997). Enciclopedia Salvat. Barcelona: Salvat. p. 580. ISBN 84-345-9707-1. 
  12. AA. VV. (1997). Enciclopedia Salvat. Barcelona: Salvat. p. 662. ISBN 84-345-9707-1. 
  13. Regiomontano (1533) De triangulis omnimodis
  14. Tartaglia (1556) Tratado general de números y medidas
  15. Rafael Bombelli (1572) Álgebra, parte mayor de la aritmètica
  16. François Viète (1579) Canon mathematicus
  17. François Viète (1591) Isagoge in artem analyticam
  18. AA. VV. (1990). Diccionario Enciclopédico Larousse. Barcelona: Planeta. p. 638. ISBN 84-320-6070-4. 
  19. AA. VV. (1990). Diccionario Enciclopédico Larousse. Barcelona: Planeta. p. 639. ISBN 84-320-6070-4. 
  20. AA. VV. (1997). Enciclopedia Salvat. Barcelona: Salvat. p. 2502. ISBN 84-345-9707-1. 
  21. Georgius Agricola (1556) De Re Metallica
  22. Paracelso (1597) Alchimia
  23. Asimov, Isaac (1975). Breve historia de la química. Madrid: Alianza. pp. 36-38. ISBN 84-206-1580-3. 
  24. AA. VV. (1997). Enciclopedia Salvat. Barcelona: Salvat. p. 2273. ISBN 84-345-9707-1. 

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search